
Basic Input/Output

1 Screen Output

The Java standard library provides three primary methods in the System.out

object for sending text output to the screen.

• System.out.print

• System.out.println

• System.out.printf (which just calls System.out.format)

2 System.out.print

System.out.print takes a String parameter and sends the string to the screen.
The statements

System.out.print("Me");
System.out.print("ow!");

will produce the output

Meow!

3 System.out.println

System.out.println does the same as System.out.print but adds a newline
character. The statements

System.out.println("Johnny");
System.out.println("Chimpo");

will produce the output

Johnny
Chimpo

1

4 System.out.printf

System.out.printf takes a format string and any number of additional ar-
guments, and prints the result of inserting the additional arguments into the
format string according to the format specifiers in the format string

• The format string can contain other text in addition to format specifiers

• Each format specifier begins with % and ends with a conversion character

• You can think of each format specifier as defining a field into which a value
is inserted

• Like print, printf does not print a newline character at the end. End
your format string with
n if you want to end your output with a newline

printf is a convenience method for format

5 System.out.printf Examples

For full details, see http://docs.oracle.com/javase/7/docs/api/java/util/
Formatter.html#syntax. Here are a few examples

• “Decimals” (integers) - d, Strings - s

System.out.printf("%d %s.\n", 7, "Samurai");

prints

7 Samurai.

• Floating point numbers - f

System.out.printf("I like %3.2f.%n", Math.PI);

prints

I like 3.14.

Play around with ConsoleOutput.java to get a feel for printf.

2

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
../code/ConsoleOutput.java

6 Number Formatting

printf is useful for general formatting, but if you need to print currency
amounts and you want to “internationalize” your code, use a CurrencyFor-
matter NumberFormat.

NumberFormat us = NumberFormat.getCurrencyInstance();
System.out.println(us.format(3.14));

NumberFormat de = NumberFormat.getCurrencyInstance(Locale.GERMANY);
System.out.println(de.format(3.14));

prints

$3.14
3,14 e

7 Packages and Imports

• All Java classes are organized in packages

• We’ve been using the default package (by not specifying a package)

• To use a class from a different package, you must either fully qualify it
every time you use it, or import it

NumberFormat is in the java.text package. The top of the NumberFormat

class contains the line:

package java.text;

And Locale is in the java.util package. So for our example from the
previous slide to work we must include the following import statements at the
top of our source file:

import java.text.NumberFormat;
import java.util.Locale;

See CurrencyFormatting.java

3

../CurrencyFormatting.java

8 Console Input

You can read input from the console using the Scanner class

• First import it from the java.util package

import java.util.Scanner;

• Then you can use a Scanner object to read, for example, three integers
like this:

Scanner keyboard = new Scanner(System.in);
System.out.println("Enter your 3 test scores, separated by spaces.");
exam1 = keyboard.nextInt();
exam2 = keyboard.nextInt();
exam3 = keyboard.nextInt();
examAvg = (exam1 + exam2 + exam3) / 3.0; // Why 3.0 instead of 3?
System.out.printf("Your exam average is %.1f%n", examAvg);

9 Basic File Input using Scanner

You can read from a file the same way you read from a keyboard by simply
initializing with a File instead of System.in

Scanner gradeFile = new Scanner(new File("grades.txt"));

Scanner’s hasNext method tells you whether there’s more input to consume.
A common idiom for reading all the lines of a text file is:

Scanner fileScanner = new Scanner(new File("ScannerFun.java"));
while (fileScanner.hasNext()) {

String line = fileScanner.nextLine();
// do something with line

}

See CourseAverage.java for a more detailed example.

10 Basic File Output using PrintStream

Look up System.out in the Java API documentaion. What’s the type of
System’s out static variable?

• System.out is initialized to use the program’s stdout file desicriptor,
which is the console if output hasn’t been redirected.

• We can create PrintStreams with other files or OutputStreams and write
to them jsut like we’ve been eriting to the console.

PrintStream outFile = new PrintStream(new File("somefile.txt"));
outFile.println(...);

4

../code/CourseAverage.java

Stop and think about this for a moment. We can write to a text file the
same way we write to a text console. What general principle in computing/pro-
gramming is this an example of?

11 Programming Exercise

Write a program that

• reads all the lines of a file whose name is given at the command line,

• creates a new file whose file name is the original file name with “-uppercase”
appended to the base name1, and

• writes all the lines of the original file to the new file but in uppercase
letters.

To do this, you’ll need to look up String’s lastIndexOf, substring, toUpperCase
methods in the Java API.

• Note: File’s constructor throws a FileNotFoundException. For now,
deal with this by appending throws Exception to the signature of any
method that instantiates a File or calls a method that does so. For
example, in your solution to this exercise the main method’s signature
should be:

public static void main(String[] args) throws Exception

1The base name of a file is the part that appears before the extension, e.g., the basename
of MyClass.java is MyClass.

5

	Screen Output
	System.out.print
	System.out.println
	System.out.printf
	System.out.printf Examples
	Number Formatting
	Packages and Imports
	Console Input
	Basic File Input using Scanner
	Basic File Output using PrintStream
	Programming Exercise

