
Inheritance

1 / 28

Programming in the large

Software is complex. Three ways we deal with complexity:

I Abstraction - boiling a concept down to its essential elements,
ignoring irrelevant details

I Decomposition - decompose system into packages, classes, functions
I Reuse - reuse library function in many diferent places

Today we introduce another kind of resuse: inheritance

2 / 28

What is inheritance?

3 / 28

What is inheritance?
More like genetics . . .

. . . but a programming concept that, like so much in CS, borrows a term
from another field to leverage our intuition.

4 / 28

Inheritance

Inheritance: deriving one class from another class.
public class Employee { ... }
public class HourlyEmployee extends Employee { ... }
public class SalariedEmployee extends Employee { ... }

I Employee is the base class or superclass
I HourlyEmployee and SalariedEmployee are derived classes or

subclasses
I Subclasses inherit the interface and implementation of their

superclass(es)
I extends is the Java syntax for inheriting from another class

Important idea to plant in your head now: subclassing is about concept
reuse not merely implementation reuse. For example, HourlyEmployee
is-a Employee conceptually.

5 / 28

Superclasses

Consider the superclass Employee1:
public class Employee1 {

private String name;
private Date hireDate;

public Employee1(String aName, Date aHireDate) {
disallowNullArguments(aName, aHireDate);
name = aName;
hireDate = aHireDate;

}
public String getName() {

return name;
}
public Date getHireDate() {

return hireDate;
} // and toString(), etc. ...

}

Employee defines the basic information needed to define any employee.

6 / 28

../code/employee/Employee1.java

Subclasses

The extends clause names the direct superclass of the current class (JLS
§8.1.4).
Here is a subclass of Employee1, HourlyEmployee1:
public class HourlyEmployee extends Employee {

public HourlyEmployee(String aName, Date aHireDate) {
super(aName, aHireDate);

}
}

I HourlyEmployee inherits all the members of Employee
I HourlyEmployee can’t access private members of Employee

directly
I The super call in the constructor calls Employee’s constructor to

initialize HourlyEmployee instances

The HourlyEmployee concept extends the Employee concept.

7 / 28

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.4)
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.4)
../code/employee/HourlyEmployee1.java

super Subtleties

I If present, an explicit super call must be the first statement in a
constructor.

I If an explicit super call is not present and the superclass has a
no-arg constructor, super() will implicitly be the first statement in
any constructor

I If there is no no-arg constructor in a superclass (for example, if the
superclass defines other constructors without explicitly defining a
no-arg constructor), then subclass constructors must explicitly
include a super call.

Together, these rules create a constructor chain from the highest
superclass of a class to the class itself.

8 / 28

Subclass Constructors

Recall our definitions of Employee1 and HourlyEmployee1.
public class Employee1 {

// The only constructor in Employee
public Employee1(String aName, Date aHireDate) {

name = aName;
hireDate = aHireDate;

}
// ...

}

public class HourlyEmployee1 extends Employee1 {

public HourlyEmployee1(String aName, Date aHireDate) {
super(aName, aHireDate);

}
}

Would HourlyEmployee1.java compile if we left off the constructor
definition?

9 / 28

Inherited Members

Given our previous definitions of Employee1 and HourlyEmployee1, we
can write code like this (from EmployeeDemo1):
DateFormat df = DateFormat.getDateInstance();
HourlyEmployee eva =

new HourlyEmployee("Eva L. Uator",
df.parse("February 18, 2013"));

System.out.println(eva.getName() + " was hired on "
+ eva.getHireDate());

Note that

I we didn’t have to define getName and getHireDate in
HourlyEmployee

I our current implementation of HourlyEmployee doesn’t add
anything to Employee

10 / 28

../code/employee/EmployeeDemo1.java

Subclasses Specialize Superclasses

We define subclasses to extend or specialize the functionality of their
superclasses. Let’s add suitable extensions to HourlyEmployee:1

public class HourlyEmployee2 extends Employee2 {
private double hourlyWage;
private double monthlyHours;

public HourlyEmployee(String name, Date hireDate,
double wage, double hours) {

super(name, hireDate);
hourlyWage = wage;
monthlyHours = hours;

}
public double getHourlyWage() { return hourlyWage;}
public double getMonthlyHours() { return monthlyHours;}
public double getMonthlyPay() { return hourlyWage * monthlyHours; }
// ...

}

Food for thought: what is the monthly pay rule for ~HourlyEmployee~s?
What if an employee works more than 40 hours per week?

1Employee2 is the same as Employee1, but we’ll keep the numbers consistent to
avoid confusion.

11 / 28

Access Modifiers

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

I Every class has an access level (for now all of our classes are
public).

I Every member has an access level.
I The defulat access level, no mofifier, is also called "package private."

12 / 28

Access Restrictions Extend to Subclasses

private members of superclasses are present in subclasses, but can’t be
directly accessed. So this won’t compile:
public class HourlyEmployee2 extends Employee2 {
// ...
public String toString() {
return name + "; Hire Date: " + hireDate + "; Hourly Wage: "
+ hourlyWage + "; Monthly Hours: " + monthlyHours;

}
}

because name and hireDate are private in Employee2. But their getter
methods are public:
public class HourlyEmployee3 extends Employee3 {
public String toString() {
return getName()+", Hire Date: "+getHireDate()

+ ", Wage: "+ hourlyWage
+ ", Hours: " + monthlyHours;

}
}

13 / 28

Overriding Methods

Overriding a method means providing a new definition of a superclass
method in a subclass. We’ve been doing this all along with toString
and equals, which are defined in java.lang.Object, the highest
superclass of all Java classes.
public class Object {

public String toString() {
return getClass().getName() + "@"

+ Integer.toHexString(hashCode());
}
public boolean equals(Object obj) {

return (this == obj);
}

}

We redefine these on our classes because

I the default implementation of toString just prints the class name
and hash code (which is the memory address by default).

I the default implementation of equals just compares object
references, i.e., identity equality. What we want from equals is
value equality.

14 / 28

@Override Annotation

The optional @Override annotation informs the compiler that the
element is meant to override an element declared in a superclass.
public class Employee2 {
// ...
@Override
public String toString() {
return name + "; Hire Date: " + hireDate;

}
}

Now if our subclass’s toString() method doesn’t actually override
java.lang.Object’s (or some other intermediate superclass’s)
toString(), the compiler will tell us.

15 / 28

http://docs.oracle.com/javase/tutorial/java/annotations/index.html

Explicit Constructor Invocation with this

What if we wanted to have default values for hourly wages and monthly
hours? We can provide an alternate constructor that delegates to our
main constructor with this HourlyEmployee3.java:
public final class HourlyEmployee3 extends Employee3 {

/**
* Constructs an HourlyEmployee with hourly wage of 20 and
* monthly hours of 160.
*/
public HourlyEmployee3(String aName, Date aHireDate) {

this(aName, aHireDate, 20.00, 160.0);
}
public HourlyEmployee3(String aName, Date aHireDate,

double anHourlyWage, double aMonthlyHours) {
super(aName, aHireDate);
disallowZeroesAndNegatives(anHourlyWage, aMonthlyHours);
hourlyWage = anHourlyWage;
monthlyHours = aMonthlyHours;

}
// ...

}

16 / 28

../code/employee/HourlyEmployee3.java

this and super

I If present, an explicit constructor call must be the first statement in
the constructor.

I Can’t have both a super and this call in a constructor.
I A constructor with a this call must call, either directly or indirectly,

a constructor with a super call (implicit or explicit).

public final class HourlyEmployee3 extends Employee3 {
public HourlyEmployee3(String aName, Date aHireDate) {

this(aName, aHireDate, 20.00);
}
public HourlyEmployee3(String aName, Date aHireDate, double anHourlyWage) {

this(aName, aHireDate, anHourlyWage, 160.0);
}
public HourlyEmployee3(String aName, Date aHireDate,

double anHourlyWage, double aMonthlyHours) {
super(aName, aHireDate);
disallowZeroesAndNegatives(anHourlyWage, aMonthlyHours);
hourlyWage = anHourlyWage;
monthlyHours = aMonthlyHours;

}
// ...

}

17 / 28

The Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their supertypes.

Consider the method:
public static Date vestDate(Employee employee) {

Date hireDate = employee.getHireDate();
int vestYear = hireDate.getYear() + 2;
return new Date(vestYear,

hireDate.getMonth(),
hireDate.getDay());

}

We can pass any subtype of Employee to this method:
DateFormat df = DateFormat.getDateInstance();
HourlyEmployee eva = new HourlyEmployee("Eva L. Uator",

df.parse("February 13, 2013"), 20.00, 200);
Date evaVestDate = vestDate(eva);

We must ensure that subtypes are indeed substitutable for supertypes.

18 / 28

LSP Counterexample

A suprising counter-example:
public class Rectangle {
public void setWidth(double w) { ... }
public void setHeight(double h) { ... }

}
public class Square extends Rectangle {
public void setWidth(double w) {
super.setWidth(w);
super.setHeight(w);

}
public void setHeight(double h) {
super.setWidth(h);
super.setHeight(h);

}
}

I We know from math class that a square "is a" rectangle.
I The overridden setWidth and setHeight methods in Square

enforce the class invariant of Square, namely, that width ==
height.

19 / 28

LSP Violation

Consider this client of Rectangle:
public void g(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assert r.area() == 20;

}

I Client (author of g) assumes width and height are independent in r
because r is a Rectangle.

I If the r passed to g is actually an instance of Square, what will be
the value of r.area()?

The Object-oriented is-a relationship is about behavior. Square’s
setWidth and setHeight methods don’t behave the way a Rectangle’s
setWidth and setHeight methods are expected to behave, so a Square
doesn’t fit the object-oriented is-a Rectangle definition. Let’s make this
more formal . . .

20 / 28

Conforming to LSP: Design by Contract

Require no more, promise no less.

Author of a class specifies the behavior of each method in terms of
preconditions and postconditions. Subclasses must follow two rules:

I Preconditions of overriden methods must be equal to or weaker than
those of the superclass (enforces or assumes no more than the
constraints of the superclass method).

I Postconditions of overriden methods must be equal to or greater
than those of the superclass (enforces all of the constraints of the
superclass method and possibly more).

In the Rectangle-Square case the postcondition of Rectangle’s
setWidth method:
assert((rectangle.w == w) && (rectangle.height == old.height))

cannot be satisfied by Square, which tells us that a Square doesn’t
satisfy the object-oriented is-a relationship to Rectangle.

21 / 28

LSP Conforming 2D Shapes

public interface 2dShape {
double area();

}
public class Rectangle implements 2dShape {

public void setWidth(double w) { ... }
public void setHeight(double h) { ... }
public double area() {

return width * height;
}

}
public class Square implements 2dShape {

public void setSide(double w) { ... }
public double area() {

return side * side;
}

}

Notice the use of an interface to define a type.

22 / 28

http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Interfaces

An interface represents an object-oriented type: a set of public methods
(declarations, not definitions) that any object of the type supports.
Recall the 2dShape interface:
public interface 2dShape {

double area();
}

You can’t instantiate interfaces. So you must define a class that
implements the interface in order to use it. Implementing an interface is
similar to extending a class, but uses the implements keyword:
public class Square implements 2dShape {

public void setSide(double w) { ... }
public double area() {

return side * side;
}

}

Now a Square is-a 2dShape.

23 / 28

Interfaces Define a Type

public interface 2dShape {
double area();

}

This means that any object of type 2dShape supports the area method,
so we can write code like this:
public double calcTotalArea(2dShape ... shapes) {

double area = 0.0;
for (2dShape shape: shapes) {

area += shape.area();
}
return area;

}

Two kinds of inheritance: implementation and interface inheritance.

I extending a class means inheriting both the interface and the
implementation of the superclass

I implementing an interface means inheriting only the interface, that
is, the public methods

24 / 28

Default Methods in Interfaces
Normally, an interface declares methods that concrete classes must
implement.
public interface Named {

String getName();
}

I Beginning with Java 8 (jdk1.8), interface methods can have default
method implementations. Default methods can only reference local
variables and static variables defined in the interface or any
superinterfaces.

public interface Destiny {

default public String getName() {
return "Child";

}
default public String say() {

return "my " + getName();
}

}

I Interfaces can also have static methods, which can’t access instance
state anyway.

25 / 28

Conflicting Methods From Interfaces and Superclasses

Superclasses win.
public abstract class AbstractPerson {

private String name;

public AbstractPerson(String name) {
this.name = name;

}
public String getName() {

return name;
}

}

So this is OK: the getName method from AbstractPerson wins.
public class GoodPerson extends AbstractPerson implements Destiny {

public GoodPerson(String name) {
super(name);

}
}

26 / 28

Conflicting Default Methods from Interfaces

Interfaces clash.
public interface Destiny {

default public String getName() {
return "Child";

} // ...
}
public interface Maggot {

default public String getName() {
return "Robert Paulson";

}
}

So this won’t compile:
public class BadPerson implements Destiny, Maggot {

// Won’t compile -- Destiny and Maggot both define default getName methods
}

27 / 28

Programming Exercise
To get some practice writing classes that use inheritance, write:
I A class named Animal with:
I A private instance variable name, with a public getter and setter.

(Note: name is a name of an animal, not the animal’s species.)
I A single constructor that takes the name of the Animal
I A public instance method speak that returns a String

representation of the sound it makes.

I A class named Dog that extends Animal and specializes the speak
method appropriately.

I A Kennel class with
I a private instance variable dogs that is an array of Dog
I a single constructor that takes a variable number of single Dog

parameters and initializes the dogs instance variable with the
constructor’s actual parameters.

I a method soundOff() that prints to STDOUT (System.out) one line
for each Dog in dogs that reads "[dog name] says [output of speak
method]!", e.g. "Chloe says woof, woof!"

We’ll review this at the start of the next lecture.
28 / 28

	Inheritance

