
Professional Java Projects

CS1331

Professional Java Projects

You know the basics of Java. Today you’ll learn the basic elements
of professional Java projects, including

I the classpath,
I separating source and compiler output,
I project directory layout,
I packages,
I jar files, and
I using an IDE.

The Classpath

Just as your operating system shell looks in the PATH environment
variable for executable files, JDK tools (such as javac and java) look
in the CLASSPATH for Java classes. To specify a classpath:

I set an environment variable named CLASSAPTH, or
I specify a classpath on a per-application basis by using the -cp

switch. The classpath set with -cp overrides the CLASSPATH
environment variable.

Don’t use the CLASSPATH environment variable. If it’s already set,
clear it with (on Windows):

C:> set CLASSPATH=

$ unset CLASSPATH

Specifying a Classpath

A classpath specification is a list of places to find .class files and
other resources. Two kinds of elements in this list:

I directories in which to find .class files on the filesystem, or
I .jar files that contain archives of directory trees containing

.class files and other files (more later).

To compile and run a program with compiler output (.class files) in
the current directory and a library Jar file in the lib directory called
util.jar, you’d specify the classpath like this:

Notice that you include the entire classpath in the -cp, which
includes the current directory (. means “current directory”).

Separating Source and Compiler Output
To reduce clutter, you can compile classes to another directory with
-d option to javac

$ mkdir classes
$ javac -d classes HelloWorld.java
$ ls classes/
HelloWorld.class

Specify classpath for an application with the -cp option to java.

$ java -cp ./classes HelloWorld
Hello, world!

If you really want to keep your project’s root directory clean (and
you do), you can put your source code in another directory too, like
src.

$ mkdir src
$ mv HelloWorld.java src/
$ javac -d ./classes src/HelloWorld.java
$ java -cp ./classes HelloWorld
Hello, world!

Project Directory Layout
Source Directories

I src/main/java for Java source files
I src/main/resources for resources that will go on the

classpath, like image files
I src/test/java for unit tests. Note that unit tests will be in

the same packages as the classes they test.

Output Directories

I target/classes for compiled Java .class files and resources
copied from src/main/resources

There’s more, but this is enough for now. More details on the
de-facto standard Java project directory layout can be found at
Maven Standard Directory Layout (Note: Maven has fallen out of
favor as a build tool, but the directory layout and dependency
management system are still used.)

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Packages

All professional Java projects organize their code in packages. The
standard package naming scheme is to use reverse domain name,
followed by project specific packages.

I Since we’re in CS1331 at Georgia Tech, we’ll use
edu.gatech.cs1331 as a base package name.

A “company” application with one package would contain the
following package statement at the top of all source files:

package edu.gatech.cs1331.company;

Packages and Directory Layout

I Compiler output is organized according to packages
I Convention is to organize source directories by packages

So if we have a package edu.gatech.cs1331.company

I Source would go in
src/main/java/edu/gatech/cs1331/company

I Compiled classes would go in
src/target/classes/edu/gatech/cs1331/company

You can specify the compiler output (src/target/clases) with
the -d switch to javac, or configure your IDE to do that, or use a
build tool.

Example Application

Clone the repository at git@gitlab.com:cs1331/company.git

git@gitlab.com:cs1331/company.git

Compiling and Running

Use the command line:

Use the build tool:

Use the IDE:

Jar Files

A jar archive, or jar file, is a Zip-formatted archive of a directory
tree. Java uses jar files as a distribution format for libraries.

I To create a JAR file: jar cf jar-file input-file(s)
I To view the contents of a JAR file jar tf jar-file
I To extract the contents of a JAR file: jar xf jar-file or

unzip jar-file
I To extract specific files from a JAR file: jar xf jar-file

archived-file(s)
I To run an application packaged as a JAR file (requires the

Main-class manifest header): java -jar app.jar

See
http://docs.oracle.com/javase/tutorial/deployment/jar/index.html
for more details.

