
Introduction to Object-Oriented Programming
Recursion

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Recursion 1 / 11



Recursion

A recursive processes or data structure is defined in terms of itself
A properly written recursive function must

handle the base case, and
convergence to the base case.

Failure to properly handle the base case or converge to the base
case (divergence) may result in infinite recursion.

CS 1331 (Georgia Tech) Recursion 2 / 11



The Factorial Function

A mathematical definition: For a non-negative integer n:

fac(n) =

{
1 if n ≤ 1
n ∗ fac(n − 1) otherwise

This definition tells us what a factorial is.
Defined in cases: a base case and a recursive case

Factorial is defined in terms of itself

CS 1331 (Georgia Tech) Recursion 3 / 11



A Recursive Factorial Function
Mathematics provides a rigorous framework for dealing with
notions of what is, computation provides a rigorous
framework for dealing with notions of how to. – SICP

To translate the mathematical definition of factorial (what a factorial is
into a computational defiinition (how to compute a particular factorial),
we need to

identify the base case(s), and
figure out how to get our computation to converge to a base case.

For factorial, the solution is straightforward:
public static int fac(int n) {

if (n <= 1) {
return 1;

} else {
return n * fac(n - 1);

}
}

See Fac.java
CS 1331 (Georgia Tech) Recursion 4 / 11

http://www.cs1331.org/code/algorithms/Fac.java


The Substitution Model of Function Evaluation

Functions are evaluated in an eval-apply cycle: function
arguments are evaluated (which may in turn require function
evaluation), then the function is applied to the arguments.
The substitution model of evaluation is a tool for understanding
function evaluation in general, and recursive processes in
particular.

Here’s fac(5):
fac(5)
5 * fac(4)
5 * 4 * fac(3)
5 * 4 * 3 * fac(2)
5 * 4 * 3 * 2 * fac(1)
5 * 4 * 3 * 2 * 1
5 * 4 * 3 * 2
5 * 4 * 6
5 * 24
120

CS 1331 (Georgia Tech) Recursion 5 / 11



Activation Records

Recursive subprograms cannot use statically allocated local
variables, because each instance of the subprogram needs its
own copies of local variables
Most modern languages allocate local variables for functions on
the run-time stack.
The system provides a stack pointer pointing to the next available
storage space on the stack.
Subprogram instances use a frame pointer that points to their
activation record, or stack frame, which contains its copies of local
variables

CS 1331 (Georgia Tech) Recursion 6 / 11



Activation Record Example

Consider this simplified example code (type annotations elided for
brevity):

void main(args) {
foo();

}
int foo() {
int r = 3;
return fac(r);

}
int fac(n) {
if (n <=1) {

return 1
} else {

return n * fac(n-1)
}

}

The stack just before fac returns with 6:
main frame args = ... in main

foo frame r = 3 in foo
return value (TBD)

fac(3) frame parameter n = 3 in fac
return value (TBD)

fac(2) frame parameter n = 2 in fac
return value (TBD)

fac(1) frame parameter n = 1 in fac
return value (1 by definition)

CS 1331 (Georgia Tech) Recursion 7 / 11



Stack Overflow

The run-time stack is finite in size.
If you put too many activation records on the stack (for example by
calling a recursive function with a “large” argument), you will
overflow the stack.

$ java Fac 10000
facLoop(10000)=0
Exception in thread "main" java.lang.StackOverflowError
at Fac.facIter(Fac.java:35)
at Fac.facIter(Fac.java:38)
at Fac.facIter(Fac.java:38)

...

Three ways to deal with this:
limit input size (brittle – how do you know limit on a particular
machine?),
increase stack size (brittle – how do you know how big), or
replace recursion with iteration.

CS 1331 (Georgia Tech) Recursion 8 / 11



Looping is Imperative Recursion

public static int facLoop(int n) {
int factorialAccumulator = 1;
for (int x = n; x > 0; x--) {

factorialAccumulator *= x;
}
return factorialAccumulator;

}

The base case is the termination condition for the loop.
The loop variable converges to the termination condition.
We “accumulate” the answer in the loop.

Recursive definitions are often more natural, but imperative/iterative
definitions often perform better.

CS 1331 (Georgia Tech) Recursion 9 / 11



Tail Recursion - Recursive Iteration
private static int facTail(int n) {

return facIter(n, 1);
}
private static int facIter(int n, int accum) {

if (n <= 1) {
return accum;

} else {
return facIter(n - 1, n * accum);

}
}

Tail call optimization creates an iterative, rather than a recursive
process:

facTail(5);
facIter(5, 1);
facIter(4, 5);
facIter(3, 20);
facIter(2, 60);
facIter(1, 120);
120

Note: Java does not optimize tail calls, but many languages do. 
CS(including1331 (Georgiaall Tech)functional languages)Recursiondo. 10 / 11



Closing Thoughts

Remember: A properly written recursive function must
handle the base case, and
convergence to the base case.

Today we learned recursive processes. We’ll also learn recursive
data structures.

CS 1331 (Georgia Tech) Recursion 11 / 11




