
Values and Variables

1 / 30



Values

2 / 30



Computing

Computing is any purposeful activity that marries the
representation of some dynamic domain with the representation
of some dynamic machine that provides theoretical, empirical or
practical understanding of that domain or that machine.
– Isbell, et. al., (Re)Defining Computing Curricula by
(Re)Defining Computing, SIGCSE Bulletin, Volume 41, Number
4, December 2009

3 / 30



Models, Languages, Machines

Computing is fundamentally a modelling activity.

I A model is a representation of some information, physical reality, or
a virtual entity in a manner that can then be interpreted,
manipulated, and transformed.

I A language is a means of representation.
I A language enables reasoning and manipulation of the model.

I A computational machine allows us to execute our models.

4 / 30



Languages and Computation

Every powerful language has three mechanisms for combining simple
ideas to form more complex ideas:(SICP 1.1)

I primitive expressions, which represent the simplest entities the
language is concerned with,

I means of combination, by which compound elements are built from
simpler ones, and

I means of abstraction, by which compound elements can be named
and manipulated as units.

In this lecture we’ll focus on primitive expressions and basic abstraction.

5 / 30

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html


A Model of Course Average

public class CourseAverage {
public static void main(String[] args) {

double hwAvg = 74.2;
double examAvg = (81 + 91 + 93 + 89) / 4;
double courseAvg = (.2 * hwAvg) + (.8 * examAvg);
System.out.println("Course Average: " + courseAvg);

}
}

I Values 74.2, 81, 93, 95, 89 are primitive expressions
I hwAvg, examAvg are abstractions which name values
I Value assigned to courseAvg computed by combining primitive

values
I Our model of course average is expressed in a language that allows

us to reason about, manipulate, and run the model on a machine

6 / 30



Identifiers

An identifier is a string of characters used as a name for a class, method
or variable.

I Can contain letters, digits, and the underscore symbol and may not
start with a digit.

I Case-sensitive: this is not the same as This.

7 / 30



Reserved and Keywords

Java reserves some identifers.

I Keywords are used by Java, like class, public, if and so on.
I Reserved words aren’t currently used, like goto and const
I You can’t use reserved or keywords for your own identifiers.
I Full list is here: http://docs.oracle.com/javase/tutorial/

java/nutsandbolts/_keywords.html

8 / 30

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html


Variable Declarations

A variable is an identifier that names a value. A variable has:

I a type, and
I a storage location for the variable’s value.

Variables must be declared before use. Here’s a declaration:
float twoThirds;

I float is the variable’s type, twoThirds is the variable name

The value of twoThirds after the declaration statement above depends
on whether twoThirds is an instance variable or a local variable. More
on that later.

9 / 30



Assignment Statements

= is the assignment operator.

I The identifier on the left side of a = must be a variable identifier (an
lvalue)

I The right side of the = must be an expression
I An expression has a value
I 2 + 3 is an expression. It has the value 5
I A variable is also an expression. It has whatever value it was last

assigned

10 / 30



Declarations and Assginments

Here’s a declaration followed by an assignment:
float twoThirds;
twoThirds = 2/3;

Usually combine declaration and assignment into an initialization
statement:
float twoThirds = 2/3;

11 / 30



Type Compatibility

Legal assignments:
int x = 1; // int literal
float y = 3.14159f; // float literal
double z = 3.1415; // double literal
boolean thisSentence = false; // boolean literal
String goedel = "incomplete"; // String literal

Illegal assignments:
int x = 1.0; // 1.0 is a double value
float y = 3.14159; // 3.14159 is a double value
boolean thisSentence = 1; // 1 is an int value

12 / 30



Java is Statically Typed

Core concepts:

I every value has a type
I every variable has a type
I assignment of values to variables must be type compatible at

compile-time

13 / 30



Syntax and Semantics

I Syntax - the form to which source code must conform
I Semantics - the meaning of the code, i.e., what it does

public class Expressions {
public static void main(String[] args) {

float twoThirds = 2/3;
System.out.println(twoThirds);

}
}

I Code inside main conforms to Java syntax: a sequence of
statements, each ending with a semicolon

I Meaning of the program, its semantics, is: initialize the variable
twoThirds with the value .667 and print it to console (or so we
think . . . )

Compile and run Expressions.java and see what it prints.

14 / 30

https://github.com/cs1331/code-basics/blob/master/Expressions.java


Type Conversion

When we run Expressions.java we get this:
$ javac Expressions.java
$ java Expressions
0.0

What happened?

I twoThirds is a float, so it can hold fractional values.
I But 2 and 3 are literal representations of int values.
I 2/3 performed integer division, resulting in a value of 0.
I float variables can hold integer values, so Java performed

automatic conversion to float upon assignment to twoThirds –
0.0.

15 / 30



Type Conversion Rules

The previous example showed an implicit widening conversion

I float is wider than int because all intergers are also floating point
values.

I Java will perform widening conversions automically because no
precision is lost.

I To perform a narrowing conversion, you must explicitly cast the
value.

16 / 30



Type Conversion Examples

This won’t compile because an int can’t hold a fractional value;
converting may cause a loss of precision (note that we’re using double
values by including a decimal part):
int threeFourths = 3.0/4.0;

You have to cast the double to an int:
int threeFourths = (int) (3.0/4.0);

What happens if we leave off the parentheses around (3.0/4.0)?

17 / 30



Exercise: What do I need on the final?

Write a program called FinalTarget that calculates the score you need
on the final exam in order to acheive a given target course average.

18 / 30



Integral Primitive Types

I byte: 8-bit signed two’s complement integer. Min value of -128 and
max value of 127 (inclusive).

I short: 16-bit signed two’s complement integer. Min value of
-32,768 and max value of 32,767 (inclusive).

I int: 32-bit signed two’s complement integer. Min value of
-2,147,483,648 and max value of 2,147,483,647 (inclusive). int
generally default choice for integer values

I long: 64-bit signed two’s complement integer. Min value of
-9,223,372,036,854,775,808 and max value of
9,223,372,036,854,775,807 (inclusive).

19 / 30



Floating Point Primitive Types

I float: single-precision 32-bit IEEE 754 floating point.
I double: double-precision 64-bit IEEE 754 floating point. Its range

of values is beyond the scope of this discussion, but is specified in
the Floating-Point Types, Formats, and Values section of the Java
Language Specification. For decimal values, double is generally the
default choice.

Floating point types should never be used for precise values, such as
currency. For that, you will need to use the java.math.BigDecimal class
instead. Numbers and Strings covers BigDecimal and other useful classes
provided by the Java platform.

20 / 30



boolean and char

I boolean: The boolean data type has only two possible values: true
and false. Use this data type for simple flags that track true/false
conditions. This data type represents one bit of information, but its
"size" isn’t something that’s precisely defined.

I char: The char data type is a single 16-bit Unicode character. It
has a minimum value of ’\u0000’ (or 0) and a maximum value of
’\uffff’ (or 65,535 inclusive).

21 / 30



Shortcut Assignment Statements

Like C and C++, Java allows shortcut assignments:

I A binary operation that updates the value of a variable:

x += 2; // same as x = x + 2;

I Pre- and post-increment and decrement:

x++; // post-increment; same as x = x + 1;
--x; // pre-decrement; same as x = x - 1;

22 / 30



Be Careful with Shorcut Assignments

Pre-increment: variable incremented before used in expression
int x = 1;
int y = ++x;
// x == 2, y == 2;

Post-increment: variable incremented after used in expression
int x = 1;
int y = x++;
// x == 2, y == 1;

What’s the value of x after x = x++?

23 / 30



Precedence and Associativity

If an expression contains no parentheses, Java evaluates expressions
according to precedence in a three-step process:

I Associate operands with operators, starting with highest-precedence
operators. This step effectively parenthesizes expression

I Evaluate subexpressions in left to right order (possibly in multiple
sweeps if deeply nested)

I Evaluate outer "top-level" operation once all subexpressions have
been evaluated

24 / 30

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html


Evaluation Example

6 + 7 * 2 - 12 is evaluated in the following steps:

1. Associate highest precedence operators with operands:

6 + (7 * 2) - 12

1. ’+’ and ’-’ have same precedence, associate left to right:

(6 + (7 * 2)) - 12
((6 + (7 * 2)) - 12)

1. Evaluate subexpressions like you learned in high school:

((6 + 14) - 12)
(20 - 12)
8

25 / 30



Side-Effects in Expressions

Consider the following expression evaluation for n = 2:
((result = (++n)) + (other = (2*(++n))))
((result = 3) + (other = (2*(++n))))
(3 + (other = (2*(++n))))
(3 + (other = (2*4))) // n was 3 from the first pre-increment
(3 + (other = 8))
(3 + 8)
11

I An assignment statement has the value that was assigned
I Pre-increment (++n) means n is incremented before it’s used in the

expression in which it appears
I Three side-effects: result = 3, other = 8, and n = 4

Don’t write code like this!

26 / 30



String Values

A String is a sequence of characters.

I String literals are enclosed in double quotes

"foo"

I String variables

String foo = "foo";

Note that, unlike the other types we’ve seen, String is capitalized.
String is a class.

27 / 30



String Concatenation

The + operator is overloaded to mean concatenation for String objects.

I Strings can be concatenated

String bam = foo + bar + baz; // Now bam is "foobarbaz"

I Primitive types can also be concatenated with Strings. The
primitive is converted to a String

String s = bam + 42; // s is "foobarbaz42"
String t = 42 + bam; // t is "42foobarbaz"

Note that + is only overloaded for ~String~s.

28 / 30



The String Class

String acts like primitive thanks to syntactic sugar provided by the Java
compiler, but it is defined as a class in the Java standard library

I See http://docs.oracle.com/javase/8/docs/api/java/lang/
String.html for details.

I Methods on objects are invoked on the object using the . operator

String empty = "";
int len = empty.length(); // len is 0

I Look up the methods length, indexOf, substring, and
compareTo, and trim

I Because String s are objects, beware of null references:

String boom = null;
int aPosInBoom = boom.indexOf("a");

Play with Strings.java

29 / 30

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://github.com/cs1331/code-basics/blob/master/Strings.java


Closing Thoughts

Every powerful language has three mechanisms for combining simple
ideas to form more complex ideas:

I primitive expressions, which represent the simplest entities the
language is concerned with,

I Values are the atoms of programs

I means of combination, by which compound elements are built from
simpler ones, and

I Programs combine and manipulate values

I means of abstraction, by which compound elements can be named
and manipulated as units.

I Variables are the simplest form of abstraction - naming values

30 / 30


	Values and Variables

